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Gravitational collapse and frequency shift 
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Physics Department, City College, Calcutta, India 
MS.  received 3 1 s t  October 1967, inpnal form 4th March 1968 

Abstract. This paper treats the problem of a spherically symmetric collapse in the 
background, not of an empty space, but of an expanding universe. Transformation 
formulae are presented which make the metric tensor components, together with their 
first derivatives, continuous at different boundaries. I t  is shown that collapse takes 
an infinite time to reach an observer in the expanding system, although it takes a 
finite time to reach an observer located in the collapsing system. The  occurrence 
of the event horizon for different models is studied and the expression for frequency 
shift is deduced. I t  indicates a cut-off as the collapsing system reaches the 
Schwarzschild singularity. 

1. Introduction 
The  problem of gravitational collapse has usually been studied in the background of a 

Schwarzschild field which asymptotically becomes Euclidean. I t  would be interesting 
and a little more realistic to consider the case where the collapsing system forms part of an 
expanding universe. In  a recent paper Raychaudhuri (1966) has considered a spherically 
symmetric 'universe' in which a limited spherical region ultimately collapses, while the 
universe at large monotonically expands and at large distances the line element tends 
asymptotically to that for the isotropic universe of negative space curvature. He found that 
the ever-expanding region does not receive any signal from a point in the collapsing region 
once contraction sets in there. In  Raychaudhuri's paper it is assumed that a single co- 
ordinate network, which is everywhere co-moving, can be introduced throughout the 
universe without introducing singularities. This necessitates, in particular, that the velocity 
field must be continuous. However, when one has coexisting collapsing and expanding 
regions, it seems natural that there would be discontinuities in the velocity, and this would 
in turn bring in discontinuities in the matter distribution. We shall, in the present paper, 
therefore consider a spherically symmetric universe in which the collapsing region is 
separated from a background (which for simplicity we take a homogeneous universe of the 
Friedman type) by an empty region. 

Our model is thus similar to that of Einstein and Straus (1945), except that, instead of 
their singularity at the spatial origin, we have a collapsing dust distribution over a finite 
region about the origin. 

2. Metrics in the three regions and transformation formulae 
For the collapsing region we can use a cosmological line element, so that we have 

n 4  

for Y < a, where q is a monotonically decreasing function of t ,  Z = 0, + 1 or - 1 and R, 
is a constant. 

The  field equations give 

p1 being the matter density in the collapsing region, which is assumed to be uniform. 
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For Y > a and extending to the homogeneous expanding universe we assume an empty 
space, where we have the Schwarzschild line element 

dR2-R2(dP'+sin20d+2). (4) 

Lastly, beyond the empty-space region we have the expanding universe, where the line 
element is 

for p 2 b, where g is a monotonically increasing function of 7, K = 0, + 1 or - 1 and R2 
is a constant. 

The field equations give, analogous to (2) and (3), 

p 2  being the uniform matter density in the universe. 

tinuous. The  transformation formulae are for (1) and (4) (Raychaudhuri 1953) 
There exist transformations to make the line elements (1) and (4) or (4) and ( 5 )  con- 

where 5 = &Y, t )  satisfies the differential equation 

in which x = In Y, and the Schwarzschild mass m is related to the density pl by 
a3e3 4 / 2  

m = 4  
(1 + Z U ~ / ~ R , ~ ) ~ '  BXP1 

f satisfies, to ensure the continuity at Y = a, the boundary condition 

The  quantity f can be expressed in terms of elliptic functions. In his paper Raychaudhuri 
(1953) showed that the transformation (8) makes the first derivatives of the metric tensor 
components also continuous. Again, for the continuity of (4) and ( 5 )  we have relations 
similar to equations (8), (9)) (10) and (11): 

R =  

dT = 

T 2  'r 
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in which y = In p and 
b3 e3912 

m = ST 
( 1  + Kb2/4Rz2)3 3 P z  

p2 being the density in the universe and b the boundary value of the radial variable p. 
Also 

Equations (10) and (lo’) establish a relation between the collapsing region and the 
universe in such a way that the mass of the matter in the collapsing region may be said to 
be equal to the mass that would have been present in the region 0 < p < b if the universe 
were completely homogeneous. 

We may next examine the relation between the flux of time at the boundary r = a 
and the flux of time for the observer in the universe. Comparing (8) and (S’), we have 

or 

and 

( 1 3 )  
q6 ag/aT dp. dT+- sY(ag/aY),(atpt) ,  46 aqjzt 8P( 8P) t ( 877 / aT>D -dt+- dr = 

aq/ at 2r 87- 2P 
For equations (12) and (13)  we now obtain 

w 2 t / W t (  at/ at),  q6( ag/ aT>( at/ at), dt -1 8P(% P P 1  z( %/a& - v6( %+>( a7 / 8T)D ) d T = (  1 8g/aT 2P( ari / 8P)  z %/at 2 P ( a r i P P )  7 
- 

1 dy. +(q- a at - q6(ag/aT)(at/ar), 
2P( arl/ aP) t 

Remembering that at the boundary Y = a, dr = 0 ,  we obtain 

dr = (14 )  

Now, as the boundary of the collapsing region approaches the Schwarzschild singularity 
R = 2m, qz  = f z  -+ 2m, and from equation (9’) we find that the denominator of the right- 
hand side of equation (14)  tends to vanish. Now, if K = 0 or - 1, ag/& will be positive, 
and hence with aq/& negative the numerator could not vanish. Thus any interval of time 
dt on the surface of the collapsing system would correspond to an infinite time for the 
expanding universe. However, if K = + 1 the universe would after a finite time interval 
start contracting, so that dt may correspond to a finite interval of time in the universe. 
Indeed, signals would actually reach the universe after it too had collapsed inside the 
Schwarzschild singularity. 

3. Development of event horizon 
One has for a radial light ray in the Schwarzschild coordinate system 

d R  11: dT = Jlr 1 - 2 m / R  

an equation connecting the time T I ,  at which light leaves the source at the boundary 
R = R, = f a z  of the collapsing system, with time T,, at which it reaches the observer at the 
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boundary R = R, = T b 2  of the expanding system. Integrating equation (15), we obtain 

Rz - 2m 
T z - T ,  = RZ-R,+2mln- 

RI - 2m 

Tb2-2m 
= qb2-<a2+2mIn 

Eaz - 2m 
so that from equations (1 1) and (1 1') we have 

b egi2 b eg'2 
-2m In - - 2 4  

(1 + Kb2/4Rz2 1 + Kb2/4R22 T2 - 

a eq/, 
= T I - -  - -2mIn 

1 + Za2/4R12 

Now, if K = 0, we have from equations (7) and (10') 

where 

= 3 > 
4 b  

0 

so that the left-hand side of equation (16) is unbounded for large values of T2.  Hence, 
to an observer at p = b in the expanding system, no event horizon develops until the col- 
lapsing system reaches the Schwarzschild singularity. However, when K = - 1, for large 
values of T,, we have 

so that, if 
T2 P 2  

eg/2 2: 

- > 1  blR2 
1 - b2/4RZ2 

b > 2(d2-1)R2 (16') 
i.e. if 

the left-hand side of equation (16) becomes negative, so that the collapsing zone will be  
cut off even before the Schwarzschild singularity is reached. But, for a suitable value of the 
boundary value b of p ,  no event horizon develops before the Schwarzschild singularity is. 
reached by the collapsing system. Thus  equation (16') sets a condition on the boundary 
value b. 

4. Calculation of frequency shift 
From equations (8) and (15) we have 

J r : d T =  1 q b  - 2 t d t  
5, 1 - 2 m p  

Differentiating (17) with respect to time T I ,  we have 

(17) 
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Using equation (S), and remembering that dr = 0 at the boundary, we obtain 

where 

Using equation (S‘), we have an analogous expression 

where 

Hence from equations (18),  (19)  and (19’) we have 

Again, the proper 
respectively, 
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(19 )  

times at reception and emission corresponding to d T ,  and d T ,  are, 

Combining equations (20) ,  (21) and (22) and equating the ratio of the proper periods of the 
received and emitted light to the ratio of the corresponding wavelengths, we obtain an 
expression for the wavelength change : 

X+dh dsz 1-2”/7]b2 1’2 (1+~)(1-8))’:” 
(23 ) -- =-=  

h ds, ( l . -2m/*?)  (Gm 
where we have written 

The  first term corresponds to the usual gravitational shift. The  terms involving a and 
indicate the effects of the motions of the observer and the source, respectively. Since the 
source is in the collapsing system and the observer is in the expanding system, aq/& is 
negative, while &/a7 is positive. Hence a and /3 are positive and negative, respectively, 
so that both terms contribute to the red shift. 

The  expressions for a and p in terms of the mass m, qb, ta, b,  a,  R, and RI are compli- 
cated. We shall, however, calculate the effects for the cases K = 2 = 0 and K = 2 = f 1 
separately. 
Case (i). K = 2 = 0 

From equations (l), (3), (9) and ( 1 1 )  one has 

= $ f a  and f a 3  (3 = ~ ( 8 m ) l ’ ~ .  
a 
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The upper sign before the radical corresponds to negative aqjat (collapse), while the lower 
sign corresponds to positive @/at (expansion). Again, from equations ( 5 ) ,  (7), (9’) and (11’) 
one has the analogous expression 

( q Y ) b  = 4 7 j b  and r ] b 3  ($1 = i : ( 8 ~ 2 ) ~ ’ ~ .  
b 

In  this case the upper sign corresponds to positive i3g/a-r (expansion) and the lower sign 
to negative 8g/ i 3 ~  (contraction). 

Hence from equations (23)  and (24)  one has 

Equation (25) shows the cut-off for the collapsing system at the Schwarzschild singularity 
Eaz = 2m, since 7 b 2  > 2m. 
Case (ii). K = Z = t 1 

equation (23) ,  considering the conditions of continuity of 6 and 7, to the form 
With the aid of equations (l), (3), (4 ) ,  (11) and (5 ) ,  (7)) (9’) and (11’) one can reduce 

I t  is interesting to note the implication of equations (25) and (26)  as the boundary 
approaches the Schwarzschild singularity, i.e. tu2 --f 2m. For the ever-expanding universe 
( K  = 0, - 1) 7 ) b 2  > 2m, and hence both (25) and (26)  give a cut-off corresponding to an 
infinite dh/h.  For the model K = + 1, however, eventually a contracting phase ensues, 
so vb2 goes on decreasing indefinitely. However, as ? a 2  < 2m (Schwarzschild singularity) 
A, also becomes greater than unity; the possibility then exists that the light signal from the 
collapsed system would reach the boundary of the universe when q b 2  < 2m. 

5. Conclusion 
Whereas in Raychaudhuri’s paper it was found that the collapsing zone is excluded 

from the onset of contraction, we find here that for K = 0, and also for a suitable value of 
b for K = -1, the contraction may be observed up to the development of the 
Schwarzschild singularity. 
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